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Prediction of Radioactive Injection Dosage for PET Image

Ebtesam Ahmad Saeed Alsanea

Abstract

Advanced computer and imaging techniques find extensive use in medicine. Medical
imaging modalities such as Positron Emission Tomography (PET) are becoming an
increasingly important component of clinical applications and research oncology for
diagnosis, treatment planning, and tumor monitoring to gather details about the process of
the patient body whether it is a disease or normal physiological process.

An important aspect of PET imaging in clinical application is the localization and detection
of tumors and lesions by administering a predetermined amount of radiotracer. This
procedure allows, for example, a detailed view of what is going inside the patient body in
cellular level. The quality of PET image is strongly dependent on the amount of
administrated radiotracer and the patient’s body parameters. As the amount of injection
radiotracer increases, the quality of resulting image increases and the lesion detection
efficiency increases.

The PET examiner society recognizes that any dose of radiotracer is associated with some
possible radiation risks. It can be harmful to the patient if essential PET imaging session is
not made due to fear of radiation risk. In order to ensure the highest quality diagnosis and the
smallest radiation risk, the patient should receive the smallest amount of radiotracer that
provides an image with sufficient quality.

Our study is focused on proposing an efficient PET simulation tool that predicts the smallest
possible amount of administrated radiotracer to provides the appropriate diagnostic
information based on significant patient’s body parameters (weight, age) at fixed scanning to
improve the clinical diagnostic process in term of tumor-detecting and localization.

We have built a model of particular PET scanner and model of a patient based on real MRI
image and digital anthropomorphic phantom of our region of interest (brain). We have
performed Monte Carlo simulation for whole PET procedure with a special parameter. At
Ivalidation stage, we have analyzed the system performance (in term of spatial resolution,
sensitivity, and scatter fraction). In evaluating stage, a dataset of 60 patients is used, and 11
independent dose prediction simulations for each patient are performed.

We conclude that our simulator performs a desirable and efficient prediction of injection
radiotracer amount that optimizes the current clinical amount up to 28%. In addition, we
found that the total injected radiotracer dosage for adult patients are mostly affected when
considering patient weight rather than patient age.



TABLE OF CONTENTS

DEDICATION L.ttt ettt esa e st e e e e e ste e e st be e s abeesnree s seenaeeenraeens i
ACKNOWLEDGMENTS ... e e aeae e ii
A B S T R A T L. e e e e e e e e a i —aaaas iii
TABLE OF CONTENTS ...ooiiiiiii e e e e e a e e e e e iv
LIST OF FIGURES ... ..t Vi
LIST OF TABLES ... e e e viii
LIST OF SYMBOLS AND TERMINOLOGY .....ouviiiiiiiiiiiiiieeeeeee et iX
CHAPTER 1 : INTRODUCION ....oiiiiiiiiiicc e 1
IOS 111 oo [V T A o] o O PR SOUPUR RSO PPPRRRP 2
1.2 Problem StatemeNt........oveii i 5
1.3 ThESIS ODJECTIVES. ....eeieiiiiieiie e 5
1.4 TheSiS OrganiZation ..........ccueiuiiiieiieiie ittt 6
CHAPTER 2 :LITERATURE REVIEW .....cocoiiiiiiiiii e 7
S = T Uod (o (o1 Lo [ TSP PRS 8
2.2 Principles of Nuclear Medicing Imaging .........ccccvevveieiiiie i 8
2.3 Positron Emission Tomography PET .........cocviiiiiiiiie e 9
2.3.1 Photon Interaction with Patient’s Body.........cccocivveiiiiiii i 11
2.3.2 PET DEECIOIS ....eeiutiie ittt ettt ettt ettt ettt ettt e e e e st eesnnee s 12
2.3.3 PET AcCqUISItion ProtOCOIS ........ccocvvveiiiiiiiec e 14
2.3.4  PET Data Representation ..........ccccccveeiiieeiiieeiiiee e e e sre e sine e snne e saee s 15
2.35 PET Image RECONSIIUCTION ........ecoiuieeiiie et 16
2.3.5.1 Analytical RECONSIIUCTION ......ccoiviiiiiiie e 17

2.3.5.2 Iterative RECONSIIUCTION .......viiiieiieiiieiie sttt 20

2.3.6 PET RAUIOLIACELS ..ottt st 21
2.3.6.1 Radiotracer INJECtioN DOSE ........cocviiiiiiieiie e 23

2.4 PRENIOM Lottt b e eane e 24
2.5  Monte Carlo Method in Emission Tomography .........ccccceevvieiiiee e 25
2.5.1 Monte Carlo Simulations SOFtWAre ............ccevvveiiriiiiiie e 29
CHAPTER 3 :METHODOLGY ..ottt ns 31
K T8 A 1011 £ [FTod o] SR UUR PR PRPRPRPIN 32
3.2 PAtiENt MOEI ... 33
321 ThePRANTOM ...t 34
3.2.2 Phantom Builds from Real Data ............cccocoveiieiiiieiiecieecccie e 34
3.2.3 Radiotracer Injection Dose Calculation............cccoccvveeiiiiiec e, 35

iv



3.24 Phantom SimUIAtioN PrOCESS .....ccevvueeiie ettt et e e e e et e e e e eeaeees 36

3.2.4.1 Adding Tumors and LESIONS...........cvuiiiieriiiiiaieesie e 39

3.3 oz L LT 1Y (0L [ TR 39
3.4 PET Process SIMUIATION .......coeiieeeeiee ettt ettt e e e et e e e e e e e e e as 40
3.4.1 Positron Emission and Annihilation............cccccvvvvviiiiiiiiiieiieieeeeeeeeeieeeeee, 40
3.4.1.1 Positron EMIiSSiON DIrECHION ....uvvvveeeeiiiii s 42

3.4.1.2 Positron Annihilation Point Coordination ............cccccevvvvvevivveeeieiiaeeeaennns 42

3.4.2 Photon transportation .............ccuveiveeiire i iee e 43
3.4.3 (24 0101 (o] g I B I=] (=Tt { (o] o IR TTTTTRRRPRRPPRT 44
3.4.4  SINOGram FOrMAatioN.........coouiiiiiiieiiieie et 44
3.4.4.1 Sinogram BuUilding PrOCESS ........ccviiiiiiieiiciii e 46

3.5  PET Image RECONSIIUCTION.......uiiiiiiiiiiiieiiie sttt 47
3.5.1.1 Fusion of the PET Reconstructed IMage ...........coceerieriiiieeiieiieeieesiee s 48

3.6 Image Quality ASSESSMENT .........ieieiiiiiiieriie ittt 49
3.6.1  Signal to NOISE RALIO........civiiiieiiieiiieiieie s 49
3.6.2 NOiSe EQUIVAIENT COUNT.........ooiuiiiiiiiieiie e 49
3.6.3 Performance MEASUIEIMENT .......oveeeeeee ettt et e e e e e et e e eeaeeees 50
CHAPTER 4 i RESUL TS .ottt ettt e e e et e e et e e e e e e eenanas 52
41 QT 00 [0t (T ) o 53
4.2 Technical REQUIFEMENTS.......ccviiiiiiice ettt 53
4.3 Experiments and RESUIS ..........cooviiiiiiiiii e 54
43.1 PAtienNt MOOEL..........oovviiiiiiii e 54
4.3.2 SCANNET MO ..ottt ettt r e aeeeeees 59
4.3.3  Simulated PET Image Quality ASSESSMENT .........c.ccevvveiiiiieiiieeiiee e e, 63
CHAPTER 5 i DISCUSSIONS ... 70
5.1 0T 00 18Tt ) o 71
5.2 Patient MOOEI .......oooeeeeeeeeeeeee 71
5.3 SCANNET MO ...t 72
5.4  Simulated PET Image Quality ASSESSMENT........cceeviveeiiiieeiiee e e cree e 74
55 EXECULION T oo s 79
CHAPTER 6 :CONCLUSION & FUTURE WORK ....coooiiiii 80
8.1 CONCIUSTON. ..ttt aan 81
6.2 LA ON .. 82
6.3 FUTUIE W OTK . 82
LIST OF REFERENGCES. ......ooeieieieieeeeeeeeeeeeeeeeeeeeeae e aaeaeaaassssassaasssssassssssnsnnnnnnes 84
A Al ettt 91



LIST OF FIGURES

CHAPTER 2: LITERATURE REVIEW

Figure 2.1 PET imaging procedure detailS............c.ccooeiirinininine i 11
Figure 2.2 COINCIAENCES BVENES. ....cuiiiiiiieitirie et 11
Figure 2.3 PET detectors CONfIQUIAtioN. .........cooveieriieieiie e 13
Figure 2.4  PET scanner CONFIQUIALION. ........cuoviriiriiieiieie e 13
Figure 2.5 The coordinates of the Lines of Response in a Sinogram............cccceveneee. 15
Figure 2.6 A parallel projection, for a specific angle ¢ , of an object corresponds to

a row S in the SINOGram MALFIX........ccoueriierire e 16
Figure 2.7 Basic step of reconstructed image filtering..........cc.ccocoevvviiiiie i 19
Figure 2.8 Iterative reconstruction teChNIQUE. ..........ccceveeiiieiinccieee e 21
Figure 2.9 FDG radiotracer metabolism in Cells............ccoooviniiiini e 23
Figure 2.10 VOXIized PhantOm..........cccooiiiiiiiii e 25
Figure 2.11 Monte Carlo simulation applied to PET imaging system.............cc.ccc..... 29
CHAPTER 3: METHODOLOGY
Figure 3.1 PET simulation basiC StrUCLUIe............cccevveieiiiiie e 32
Figure 3.2 Digital voxlized phantom...........cccoeiieiiiiiiincie e 34
Figure 3.3 Radiotracer injection dose calculation procCess...........cccoeveveriervsreesivereenes 36
Figure 3.4 SImSET activity distribution table for 18F-FDG radiotracer activity in

AN oT: L o] 0= V1 (o] 1 o RSOOSR 38
Figure 3.5 PET physical processes implementing in the simulation.......................... 40
Figure 3.6  positron range for 18F-FDG iN WALer...........ccovevueiieiiiieiece e 41
Figure 3.7  Sinogram building PrOCESS.......cccvcueeieiiiiiie et se st sra e 45
Figure 3.8  Reconstruction of single detector crystal............cccocveveiiiiiviiiiiie e 48
Figure 3.9 CoNfUSION MALFIX.....ccuiiieiiiieiie et et s eaesreesre e 51
CHAPTER 4: RESULTS
Figure 4.1 MRI brain image from DICOM library.........c.cccccooevviieieineie e 55
Figure 4.2 Metadata associated with MRI image presented in Figure 4.1.................. 56
Figure 4.3 Original MRI phantom image for the proposed patient model.................. 58
Figure 4.4 MRI phantom for the proposed Patient model after excluding non-

CErEDIal SITUCTUIES. .....eiieeectie ettt et r e e 58
Figure 4.5 Attenuation coefficient map for the proposed patient model...................... 58
Figure 4.6  Emission map of the proposed patient model when the total injected

radiotracer amount = 370MBQ.........ccoveiieieiie e 59
Figure 4.7 Emission map of the proposed patient model when the total injected

radiotracer amount = B00MBQ.........ccovviieiie i 59
Figure 4.8 Physical and simulated illustration of the proposed scanner model........... 60

Vi



Figure 4.9 Direction at which spatial resolution measured..............cccoceveiinieiinennnns 61

Figure 4.10 True and detected tumours when recall=1..........cccccooiriniininininiciien, 67

Figure 4.11 True and detected tumor when recall=1 (detailed view)..........c...ccccuerureee. 67

Figure 4.12 Image-based lesion detection experiments of 11 independent simulations
for patient with 63Kg and 70 YEars..........ccveeirieiiiieieieie e 68

CHAPTER 5: DISCUSSIONS
Figure 5.1 Spatial resolution for phantom positioned at 10 mm from the center of

SCANNET TINQ. vttt ettt ettt e ettt sr bbbttt sttt eb e en e s 73
Figure 5.2  Spatial resolution for phantom positioned at 100 mm from the center of

SCANNET TNttt ettt ettt ettt ettt sttt b bbbt et eb e s e s 73
Figure 5.3  Sensitivity values for phantoms positioned at 0 and 100 mm from the

CeNter OF SCANNET FINQG......cuiriiireiie ittt 74
Figure 5.4  Scatter fraction evaluation measurement for two energy windows............ 74
Figure 5.5 NEC values for default scanner and patient model.............cccccooeviiiennneee 75
Figure 5.6 Lesion detection (precision and recall) for default patient model.............. 76
Figure 5.7 Total injected activity for patients with different weight (Kg) and fixed

AL (T35 YBAIS)..ueeeeeie sttt ettt 76
Figure 5.8 Total injected activity for different patients groups..........cc.ccocevevriervnennnnn. 77
Figure 5.9 Total injected activity for patients with fixed weight ( Kg) and different

age ((years) WeIght=063 K. .......cceurrireiirieireeie e 78
Figure 5.10 PET simulation execution time profile............ccocoiinininiiniiii e 79

vii



Table 2.1
Table 2.2
Table 3.1
Table 3.2
Table 3.3
Table 4.1
Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6
Table 4.7

Table 4.8

Table 4.9

LIST OF TABLES

Selected list of isotopes, and their decay energy by positron emission...... 9
Some radiotracers used in PET imaging and their applications................. 22
Example of attenuation coefficient of the structures in Zubal phantom..... 37

Index numbers and their associated structures in Phantom under study.....38
Detectors ring arranNgeMENT..........coeevrieienieie et 46
Specifications and features of the Siemens Biograph2 scanning system....60

Spatial resolution for two different phantom positioned at 10 and 100

mm from the center of the proposed scanner model.............ccocoveviiiniiines 61
Simulated and measured values of the sensitivity of our proposed

SCANNEN MOEL......c.ei i e 62
Simulated and measured value of the scatter fraction experiment of our
Proposed SCANNEr MOUEL.........cocveiiieie e 63

Statistical parameters SNR and NEC for default scanner and patient

Lesion detection (precision and recall) for default patient model.............. 65
total injected activity for patients with different weight in Kg and fixed

aQge IN YEAr, 0E=35 YEAIS.....ccueeieerreieesieeriesreestesie e e e eieereesrae e e e eseesaesaeens 66
Total injected activity for patients with fixed weight in Kg and different
age in year, Weight=63 Kg........ccccccoriiiiiiiicrece e 66
Precision and recall values image-based lesion detection experiments of

11 independent simulations for patient with 63Kg and 70 years................ 69

viii



LIST OF SYMBOLS AND TERMINOLOGY

ALARA As Low As Reasonable Achievable

BP Back Projection

Bq Becquerel

CDF Cumulative Distribution Function

Ci Curie

CT Computed Tomography

DICOM Digital Imaging and Communication in Medicine
EANM European Association of Nuclear Medicine
FBP Filter Back Projection

FDG Fluro-Deoxy-Glucose

GATE Geeant4 Application for Emission Tomography
1A Injected Activity

LOR Line Of Response

MRI Magnetic Resonance imaging

NEC Noise Equivalent Count

NEMA National Electronic Manufacture Association
OSEM Order Subset Expectation Maximization Algorithm
PD Probability Distribution

PET Positron Emission Tomography

PR Positron Range

RNG Random Number Generator

Sl International System of unit

SIMSET  Simulation System for Emission Tomography

SNR Signal to Noise Ratio
SPECT Single Photon Emission Computed Tomography
ub Uniform Distribution



1 INTRODUCION



CHAPTERI

INTRODUCTION

1.1 Introduction

Medical imaging is becoming an increasingly important component of clinical
applications and research oncology for diagnosis treatment planning, and tumor
monitoring. During the years, multiple imaging technologies have been developed
using the rapid advances in computer and imaging approaches. The non-invasive
clinical diagnose can be perform with two types of different medical imaging
technologies: standard and functional. Technologies such as X-ray radiography,
Computed Tomography (CT) , Ultra Sound (US) and Magnetic Resonance imaging
(MRI) provide anatomical information about morphological changes of size, shape or
location in a patient’s body. On the other hand, technologies such as functional MRI,
Single Photon Emission Computed Tomography (SPECT), Positron Emission
Tomography (PET) and gamma PET provide functional information about biological
function of the body. Recently, powerful imaging technique that combine the two
technologies (for example PET/MRI) were developed in order to achieve a more
accurate fusion image and a complete picture that can be used to diagnose problems

and determine the treatment progress[1], [2].



Nuclear medicine examinations are invasive and repeatable reproducible imaging
methods widely applied in the field of cardiology, oncology and neuroscience. These
methods integrate two main components in order to work properly: radiotracer and
detector. The radiotracer administered to the patient’s body has a marked
radionuclide emitting a positron in PET and a single photon in SPECT. The second
component is represented by a camera able to detect the emitted radionuclide. In
PET, the®F, *!C, 3N and *°0 are the positron emitting radionuclide that are usually
used in medicine application. These radiotracers are attracted to specific organs,
tissues or body regions and enable the measurement of the biological and
biochemical process. The camera detects the radiotracer presence and generates
images by detecting the photons annihilated from positron emission and decay. The
generated pictures are highly sensitive and quantitatively accurate images of the
tracer concentration distribution, which allow doctors and specialists to follow the
dynamics of the tracer in the patient’s body / region of interest. The most common
radiotracer used in PET examination is 2-Deoxy-[**F]Floro-D-Glucose ( [**F]FDG,
®F_FDG or FDG). As FDG is analogous to glucose and tumours accumulate glucose
more than the surrounded healthy tissues, it is used to stage cancer and to detect
possible tumors. The PET functional imaging using FDG is considered as the most
common application in medical practice for examination and diagnosis of oncologic
patients[3]-[5].

Because PET imaging deals with radiotracer decay, positron emission, photon
transportation and particles detection, the use of simulation is very popular in PET
research and clinical practice. Monte Carlo simulation technique plays an essential
role in nuclear medicine researches and studies covering a wide range of problems

that could not solved with experimental or analytical method. Monte Carlo



simulations are widely used for PET imaging simulation because they take into
consideration all the random processes concerning in PET imaging. PET simulation
tools using Monte Carlo are useful in modelling new scanners, quantifying the
radiotracer amount, planning the radiotracer dosage, as well as studying the factors
that affect the quality of PET reconstructed image. Furthermore, the Monte Carlo
simulation can create data very close to those obtained from real measurement.
Currently available Monte Carlo simulation tools are not easy to understand and use
by beginners and temporary users with no programming and physical background.
Also, those software are extremely time consuming, require large space on the hard
disk and in general are consumers of high computational resources[6]—[9].

An important aspect of PET imaging in clinical application is the localization and
detection of tumors and lesions by administering a predetermined amount of
radiotracer. This allows for example, a detailed view of what is going inside the
individual patient’s structures and organs at cellular level. The quality of the
resulting PET image is strongly dependent on the amount of administrated
radiotracer and on other factors such as scanning session duration and the patient’s
body parameters. As the amount of injection radiotracer increases, the quality of
resulting image increases and the lesion detection efficiency increases. The
radiotracer dose recommended to be used in real clinical examination is linearly
dependent on patient weight and it is not sufficient to produce quality images that
can make a difference in diagnosis process[10]-[14].

There are many PET image quality measurements. The widely used metrics are:
i)Noise Equivalent Count (NEC), which quantifies the statistical properties of image
before construction; and ii) Signal to Noise Ratio (SNR), which measures the noise

in the resulting image. From the medical point of view, the most important quality



measurement metric is performance measurement in a given diagnostic task such as

lesion localization and detecting[10], [13], [15].

1.2 Problem Statement

In PET imaging procedure, a small amount of radiotracer should be injected in order
to examine the body functional process. The PET examiner society recognizes that
any dose of radiotracer used in this procedure is associated with some possible
radiation risks. The radiation dose for PET imaging should be minimized so that the
patient receives the smallest amount of radiotracer that provides image with
sufficient quality.

It can harmful to the patient if essential PET imaging session (PET imaging session
that can provide to the medic important data about the patient’s treatment and
diagnosis) is not made due to fear of radiation risk. To ensure the highest quality
diagnosis and the smallest radiation risk, the right PET imaging procedure with the
right injection dose should be given to the right patient at the right time. When PET
imaging examination is performed correctly, the advantages of this examination are
more important than the potential risk. Having a computer based software or
simulation tool that can predict the optimal radiotracer injected dosage for patients

can reduce PET imaging cost and save patients from potential risks.

1.3 Thesis objectives

This This research proposes straightforward, inexpensive, and efficient PET
simulation tool. This tool will be used to predict the smallest possible amount of
administrated radiotracer that provides the appropriate diagnostic information based

on significant patient’s body parameters (weight, age) at fixed scanning time. In



addition, this tool will be used to improve the clinical diagnostic process in term of

tumor-detecting and localization.

1.4  Thesis Organization

The thesis is organized into six chapters. Chapter 2 provides a literature review about
the main principle of nuclear medicine imaging with Particular attention to PET
imaging modality. In addition, Chapter 2 focuses on the basic structure of PET
imaging system and its general modules, the PET image reconstruction methods the
PET radiotracer and its injection dose. Also, it describes the role of Monte Carlo
methods in PET imaging. Chapter 3 discusses the methodology followed in this
study in details. In chapter 4, all the experiments and results finding are illustrated.
Detailed discussions and analyze the results are in chapter 5. Chapter 6 conclude the
work, with special emphasis on results and limitation. In addition, some directions

for future work are suggested.



2 LITERATURE REVIEW



CHAPTER 11

LITERATURE REVIEW

2.1 Background

Since the late 40s, the first application of nuclear imaging was realized when iodine
radioactive was used to trace thyroid cancer in a point-by-point scanner. From that
point on, due to rapid advances in computing and imaging technologies, different
modalities have been developed in nuclear imaging device and applications. PET and
SPECT are the main nuclear medicine imaging applications designed to observe the
metabolic processes of the body.

In this chapter, a brief overview of the main working principles of nuclear medicine
imaging is presented. Particular attention is given to PET imaging and its

applications.

2.2 Principles of Nuclear Medicine Imaging

In order to properly work, all nuclear imaging approaches require two key
components: i) a radiopharmaceutical (radiotracer) that is a label substance made
up of a molecule of interest from the patient’s body. It is usually introduced into the
body by injection, swallowing or even by annihilation then attracted to specific
tissues, organs, or body region of interest. ii) a device or camera (scanner)able to

detect the radiotracer activity presence and that provides functional information



about the processes taking place in that specific region of interest. The information
provided by nuclear medicine imaging differs from other medical imaging modalities
such as X-ray, CT, and MRI. While these modalities provide an anatomical
information about the structure morphological changes, the nuclear medicine
imaging provides information about biological activities and biochemical changes of
the process[11], [16], [17]. Because the biological activities and biochemical changes
exceed the morphological changes, medicine nuclear imaging determines the

presence of abnormality much earlier than other approaches [1], [2].
2.3 Positron Emission Tomography PET

PET is described as one of the main applications of nuclear medicine imaging. It is a
medical imaging approach that estimates the spatial distribution of the injected
radiotracer based on the annihilation of the photons emitted by positron emitting
isotopes e.g. 1'C, 1N, 0, *®F, ®“Cu. Because the amount of radiotracer introduced to
the patient’s body is relatively small, PET provides a biochemical and functional
diagnose information in non-invasive and safety manner.
The procedure of how PET imaging works is describing as following: the radioactive
isotope contained in the injected radiotracer decay through the most common decay
method known as positron emission (also called B* or beta-plus decay). Essentially,
the proton in the isotope converts into a positron e* and neutron n. Equation (2.1)
illustrate an example of isotope’s decay by positron emission[5].

A, > A, +n+et +energy (2.1)
The energy is shared between the resulting isotope, the positron, and the neutron.
The range of this energy is from zero to maximum value Emax. The Emax Value
determined by the difference in atomic masses between the decayed isotope and the
resulting one [18]. Table 2.1 presents a list of isotopes that commonly decay by

9



positron emission method in PET imaging and their associated maximum energy of

the emitted positron.

Table 2. 1 Selected list of isotopes, and their decay energy by positron emission

Isotop Maxim;:laXEnergy
1c 0.96
BN 1.20
0 1.73
8 0.63
Na 0.55
%cCu 0.65

After a short period of time (approximately 10 s), this positron e* resulting from B+
decay fuses with an electron from patient’s tissue and organs, resulting in two anti-
parallel direction photons (called gamma rays) with an energy of 511keV. These
photon pairs are emitting simultaneously and are detected by the PET scanner. The
positron fusing with electron and photons emitting reaction is known as positron
annihilation process.

Because a PET scanner should detect all photon pairs emitted by the patient body,
the detectors are arranged as a ring surrounding the patient. Only those photon pairs
that hit two different detectors on the opposite side of the ring at the same time or in
a short predefined timing window[19] are recorded, this being considered as a
coincidence event. The predefined time window is called coincidence window and is
usually set between 8 to 12 ns. If a sufficient number of coincidences appear
(typically 10° to 10° events), it is possible to reconstruct statistically meaning full

image of the radiotracer distribution in the patient body[3], [5], [20], [21].

10



Figure 2.1 illustrates the PET imaging procedure: 1) Radiotracer isotope decay and
positron emitting. 2) Positron travelling in the patient tissue then annihilated. 3)
Producing two anti-parallel photon rays and4) Each photon hits a detector

crystal[22].

O positron emitting

= \ isotop

i)

(511keV) | A

Figure 2.1 PET imaging procedure details

2.3.1 Photon Interaction with Patient’s Body

The procedure detailed in the previous section described the ideal PET imaging
process and allows the generation of a perfect reconstructing image from a
radioactive distribution in the region of interest. In reality, there are other processes
can occur at the same time or after annihilation. Consequently, the PET scanner can
detect a false coincidence event that leads to image quality degradation.

There are three different types of coincidence events that can be recorded by the PET

imaging system as shown in Figure 2.2:

Figure 2.2 Coincidences events
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e True coincidence (Figure 2.2 a).This event is found when the two detected
photons are coming from the same annihilation process. The photons did not interact
with the surrounding tissue, so none of them changed its direction, and none of them
was scattered.

e Scattered coincidence (Figure 2.2 b). This is a true coincidence event but one or
both photons interacted with the patient’s body before hitting the scanner detector.
That mean the photon scattered and changed its direction and arriving at a different
detector from the one that is supposed to.

e Random coincidence (Figure 2.2 ¢).This event occurs when two photons from
different annihilation processes are hitting two detectors in the same coincidence
window.

It is essential to know the amount of each of those events with respect to the total
amount of detected coincidence events because valid information about the
distribution of radiotracer in the patient’s body only comes from the true
coincidence, while scatter coincidence provides blur and random coincidence

produces noise in the acquisition data.

2.3.2 PET Detectors

As we mention before in section 2.3, the PET system is designed to have a ring of
detector blocks. Each block is built from scintillation materials and consists of a

collection of small detection elements called crystals as shown in Figure 2.3.
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Figure 2.3 PET detectors configuration

Today, the detector blocks build by using two design model either large continues
crystals or array of discrete crystals. The first design provides a low-cost detecting
system while the other design provides a higher sensitivity system. In either model,
the detector blocks arranged as a full ring surrounding patient’s body or a partial ring
with rotation. Figure 2.4 show the three basic PET scanner configurations found in
modern PET systems: a) Array of large detectors block. b) Partial ring of detectors

with motion and c) Full ring of desecrate detectors block.

(a) (b) (]

Figure 2.4 PET scanner configuration

In order to work properly and provide the best quality image for a given amount of
injected radiotracer, the detector systems must be able to detect all photons with an

energy of 511keV that hit the crystals surface. In addition, it should determine when
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a photon hits the detector and then, record it and compare the time of all detected
events, specifying the photon pair of single annihilation process. Furthermore, it is
important to indicate the energy of each resulting photon and to reject the scattered
events. Almost all detectors are built with a scintillation material that emits visible or
ultraviolet light when it interacts with the emitted photon pairs. The resulting light is
detected and converted into electronic pulses using light detectors [23], [24]. The
properties should be considered when choosing the detectors materials are efficiency,
cost, and physical form. In general, it should be fast, dense and cheap to produce

[20], [25]-[27].

2.3.3 PET Acquisition Protocols

There are set of standardized PET acquisition protocols that ensure the stability of
the acquired PET data. One of the basic acquisition protocols in PET clinical
examination is to collect data over a fixed time. The resulting image represents the
average radioactivity concentration in the specific body region during the scan
period. This is the typical scanning mode for studies that observe biochemical
parameters proportionally to the radiotracer concentration such as studies use the
radiotracer of 18F-FDG which remains stables for 30-40 minutes after it is injected
[13], [14]. Moreover, the other acquisition protocol requires dynamically following
the change of radiotracer concentration for a particular biochemical parameter. The
PET data are collected based on a sequence of image frames and the resulting
reconstructed image provides information about the biological changes in the

radiotracer concentration and distribution over time.
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2.3.4 PET Data Representation

The information that gets from projection data acquired by PET imaging procedure is
called Line of Response (LOR). The simple approach to storing the information is to
organize it into a set of parallel projections called sinogram or histogram. Later, this
sinogram should be reconstructed in order to get the image describing the radiotracer
distribution within patient’s body.

In PET scanner, the LORs are represented as a set of coordinate (s, ¢), where s is the
axial distance between LOR and the scanner center while ¢ is the angle of LOR.

Figure 2.5 presents the LOR coordinates system [28]

A
Line of Response y!

Figure 2.5 The coordinates of the Lines of Response in a Sinogram

A sinogram from a simple PET system can be obtained in two forms: direct and
oblique. If all LORs positioned in the same detector ring, the sinogram is called
direct sinogram while if they are placed in different rings, the sinogram is oblique.
For a scanner system with N detector rings, there are N direct sinogram and N(N-1)
oblique sinograms with a total of N2 sinograms[3].

In a case of direct sinogram ,the radioactivity distribution is a row data consists of
detection photon pair events . This data are usually arranged into a 2D matrix that
records the number of detecting events for a particular pair of detectors. The matrix
is ordered as following: each row represents the projection of the radiotracer activity
at a given angle ¢, and each column represents distance offset from the scanner
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center s. Equation (2.2) provides the relationship between the elements s, ¢ in this
matrix for radioactive distribution for an object positioned at the location (x,y) from
the center of PET scanner

s=xcos¢ + y sing (2.2)
The sinogram described above is represented in Figure 2.6. The LORs of a point that
not cross the scanner center are representing by a curve line on the corresponding
sinogram while a point source located in the center is representing by a straight line

in the corresponding sinogram[29]-[31].
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Figure 2.6 A parallel projection, for a specific angle ¢ , of an object corresponds
to a row s in the sinogram matrix

2.3.5 PET Image Reconstruction

The radiotracer distribution information stored in the sinogram is very useful but not
at a glance. The goal of image reconstruction is to extract from the sinogram a cross-
sectional image that illustrates the accurate distribution of the radiotracer in the
object being scanned using the mathematical algorithms of the computed
tomography. Numerous image reconstruction algorithms have been developed
through the years. Two basic approaches for reconstructing image are widely used.

The first approach uses mathematical techniques in order to compute the
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radioactivity distribution in the scanned object. These algorithms are represented by
simple Back Projection (BP) and its extended and improved version, Filter Back
Projection (FBP). The second approach is to use statistical techniques in order to find
a most reliable image. These algorithms are called iterative algorithms, the ordered

subsets expectation maximization algorithm (OSEM) being the most popular.
2.3.5.1 Analytical Reconstruction

Analytical reconstruction algorithms are based on the idea that there is only one
possible image can be reconstructed from the given sinogram projections data. The
straightforward technique for image reconstruction is simple BP method while the

conventional one is based on FBP.
e Back Projection Method

As described in section 2.3.4, the radiotracer distribution data in a given LOR in a
sinogram represents the count of all photon pairs detected by particular detector pair
along a line across the object depth. The method of Simple BP is used to reconstruct
the required images from all the LORs stored in a sinogram. The Fourier Slice
Theorem supports the principle of BP[5], [32].

For reconstruction an image of a pre-define size, for example,256*256 pixels, The
reconstruction image pixel in (X,y) position is related to coordinates in the sinogram
data given by equation (2.2) .The measured data in sinogram corresponding to the
calculated s is added to the (x,y) position in the reconstructed matrix for all
projection angle ¢ . The resulting Back Projected image pixel can be calculated by
equation (2.3) where 1" (x,y) is the reconstruction matrix , p(s,$) is the count of

detected event in sinogram and M is the number of projection angles.
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The result of this process is an image that is similar to the true distribution of
radioactivity in the given object, but it is also a heavy blurred representation of the
object . The blurring of the reconstructed image is directly proportional to the
distance of acquired LOR from the scanner center. Thus, the relation between the
original radiotracer distribution image I(x,y) and the resulting reconstructed image

I'(x,y) can be given by equation (2.5) .

i6y) = 1(57) ® @5)

The symbol ® in the above equation denote the complex relational operation. More
information about simple Back Projection reconstruction method can found in[3],

[20], [24], [33].

e Filtered Back Projection Method

The blurring effect in a reconstructed image introduce by the simple BP can be
minimized by applying an image filtering to the PET acquired data. After that, the
filtered data is reconstructed by back projected method, the resulting reconstructed
image being a representative image of the given object. This technique is called
filtered back projection. It is principally based on Fourier transformation method or
projection slice theory.

According to the Fourier method, the reconstructed image can be filtered either in the
frequency domain (measured projection data p(s,¢) in a sinogram) or spatial domain
(radiotracer distribution 1(x,y) in original object). In this case, the projection data in

each LORs is converted from spatial domain to frequency domain. This operation is
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known as Fourier transformation while its inverse operation of converting the data
from frequency domain to the spatial domain is called inverse Fourier
transformation. Equation (2.6) expresses the Fourier back projection reconstruction

method.

F(ve,vy) = FT f(x,¥) (2.6)
In the equation (2.6), F(vy,Vy) denotes the resulting Fourier transformation of pixel
positioning at (X, y) and FT means the Fourier transformation operation. Essentially,
the Fourier transformation F(vy,Vvy) of each row in the sinogram is taken and added
together.
A more well-designed reconstructing method , named filtered back projection (FBP),
be achieved by reformulating equation (2.5) in the spatial and frequency domain.

The result is:

F(v) = Hw) * F(v) (2.7)
F (v) represents the filtered projection produced from the multiplication of filter
function H(v) in the spatial frequency domain and the initial data that is transformed
using Fourier transformation F(v). Figure 2.7 illustrates the basic step of

reconstructed image filtering.

Inverse Fourier
Transformation

T T

mput output
blurred image filtered image

Fourier Transformation ———™ filter fimction o

Figure 2.7 Basic step of reconstructed image filtering
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The reconstruction filter function is known as the ramp filter which amplifies the
high —frequency with respect to the low frequency [9], [20], [24], [34]. FBP gives
reasonable results in practical PET reconstruction and its one of the most used
reconstruction algorithms. Furthermore, due to its simplicity and to the fact that it is
fast in computation, the use of this algorithm is recommended by National Electrical

Manufacturers Association NEMA [4], [5], [35].

2.3.5.2 Iterative Reconstruction

Iterative reconstruction algorithms are based on the idea that there is more than one
possible image that can be reconstructed from a given sinogram. The main objective
of these algorithms is to choose which images looks most like the real object. This is
achieved by computing multiple reconstructions and providing an algorithm to
choose the optimal image.

Figure 2.8 summarizes the main idea of iterative reconstruction technique. This
technology starts by computing an initial estimation of the reconstructed image using
analytical reconstruction algorithm, typically FBP. Then, in order to produce a set of
estimated projections, the initial reconstructed image is back projected using forward
projection method. The estimated projections are compared to the measured
projections and, if there is a difference, correction is made to improve the estimated
ones. Corrected projections are then back and forward projected again, the resulting
projections being compared to the initial ones. The reconstruction processes stop

when the difference between estimated and measured projections is reasonable low.
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Figure 2.8 Iterative reconstruction technique[36]

An overview on the different iterative reconstruction algorithms can be found in [9],
[19], [24], [36], [37]. These algorithms show improvement in reducing noise and
provide an image with better quality, but they suffer from some drawbacks such as :

computationally slow and requirement of carefully estimated difference parameters.
2.3.6 PET Radiotracers

The radiotracer used in PET imaging can affect the quality of resulting images. All
radiotracers used in PET (see Table 2.2) have to satisfy some requirements such as
they have to be not toxic or harmful to the patient, they have to be chemically
incorporated into the biological process under examination without modifying it. In
addition, they should be specific for the physiological process under study, so they
have to join specific active molecules and to follow specific ways. Furthermore, they
should produce images with low noise and high contrast. The radiotracer molecule

has to be easily synthesizable, and it must have a decay time suitable to the clinical
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needs. Very short decay time could not be able to detect a sufficient number of

coincidence events required to reconstruct the PET acquired image.

Table 2.2 Some radiotracers used in PET imaging and their applications[3]

Radiotracer

2-[F-18]Fluoro-2-deoxy-D-glucose (FDG)

[O-15] water, [N-13] ammonia, [O-15] butanol,
[O-15] CO2

[F-18] Fluoride

[C-11] O-methylglucose

6-[F-18] Fluoro-L-DOPA

L-[metil-C-11] Methionine

[C-11] Raclopride, N-[C-11] methylspiperone
[C-11] Flumazenil

[F-18] Fluoromisonidazol

[C-11] Acetate

8-[F-18] Fluoroganciclovir, 8-[F-18]
fluoropenciclovir

8-[F-18] fluoropenciclovir

Application
glucose metabolism

blood flow

bone metabolism
glucose transport
dopamine metabolism
Amino acids metabolism
dopamine receptors
GABA receptors
ischemia/hypoxia

Acetate metabolism (Krebs cycle)
genetic expression

Inflammation

The most commonly used radiotracer in clinical PET is the glucose analogue *°F-
FDG. This is modified glucose compound that acts like normal glucose and allows
the imaging of glucose metabolism. As Figure 2.9 illustrates, during the PET
examination, FDG is injected into the patient’s body, following the physiological
pathways to the cells that use glucose as the main source of energy. Then the FDG
accumulated and concentrated according to the amount of glucose utilization in each
cell. Most of the abnormal tumors and cancer cells consume glucose more than their
surrounding normal cells, which makes FDG an effective radiotracer in detecting and

staging a variety of cancers. Moreover, this radiotracer became widespread in
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everyday clinical routine due to the facts that is easy to produce ,it has an ideal decay

time and its able to pass through blood and brain barrier[3], [5].

Cell
Glycolysis

Glucose 6-P

Glucose —r;
o Cytoplasm
FDG - FDG = FDG-6P —=$Block

Figure 2.9 FDG radiotracer metabolism in cells[38]

2.3.6.1 Radiotracer Injection Dose

The amount of radiotracer that should be injected into a patient’s body is an
important issue in PET examination. There are standards on what the dosage amount
of radiotracer that must be administrated. In this regard and according to the
European Association of Nuclear Medicine EANM , the amount of injected FDG
radiotracer applied in the case of whole body scan for adult patient approximately
equals to 2.5MBqg /kg, when the scan duration equals to 5 min. Alternative
recommendations for adult patients scans are given by EANM procedure guidelines

[13], [14]. For **F-FDG whole body PET scan , it is recommended that
m
A = constant * (%)0'8634 (2.8)

where A denote the amount of administrated radiotracer , constant is a factor chosen
according to the PET scanner types , m is the patient’s weight in Kg normalized into

weight depend on factor and 0.8634 is the normalization correction[10].
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The amount of injected radiotracer is measured as the number of decay per time unit.
The common units for expressing radiotracer amount in International System of
Units SI are Curie (Ci) and Becquerel (Bg). One Ci is defined as 3.7*10%

decays/second while Bq is defined as 1 decay/second[3].
2.4 Phantom

The purpose of having a phantom or a realistic model of the subject is to represent
the patient’s body tissue and organ for a region of interest and to allow modelling the
radiotracer distribution in a similar manner to real biological tissue and organs. In
literature phantom is defined as a mathematical model designed to accurately
represents the tissue or the organ system in the whole body [3]. The benefits of
using computerized phantoms in medical imaging studies are that the physiological
process is monitoring to provides strong bases to evaluate and improve the imaging
scanner and devices ,data acquisition methods and image reconstruction algorithms.
Furthermore, the computerized phantom can be modified in order to model different
test situations. The fundamental designs and technical challenges of computational
models for application in a radiological science can be found in[7], [39]-[41].

Computerized phantom can be defined as a simple geometrical structure that consists
of mathematical and geometrical shapes like point, line, cylinder, sphere, and disk.
This type of phantoms is sufficient for simple device performance evaluation but its
fail in reconstruction algorithm evaluation. The other computerized phantom type is
voxel based phantom which can provide better representation for the scanner
performance evaluation as well as a reconstruction algorithm evaluation under
realistic situations. This phantom can be defined from tomographic image segments
of the patient, obtained by either CT or MRI acquisitions. In addition, in order to

assign the radiotracer activity distribution of different tissues and organs to the
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phantom data , some real PET acquisition image may require . This type of phantom
is widely used in most dedicated imaging software packages. Because the creation of
a voxlized phantom is not straightforward, different standard voxel based phantoms
have been developed and available for the simulation studies. Zubal phantom[42] is
one of the standard phantoms which provide a 3D model of the structure of an adult
male. It is often used for brain simulation studies. In addition, there is another type of
phantom representation based on hybrid models. It is defined as a combination of the
realistic description of the organ’s tissue with flexible mathematical and geometrical
representations. One example of this type of phantom is 4D extended cardiac-torso
XCAT phantom[43]. It provides a very realistic model of the human structure and
their physiological process like cardiac and respiratory motion. The organ shapes are
based on CT data and the phantom includes the attenuation coefficients for a given
photon energy and for an assigned particular radiotracer concentration value[4].

Figure 2.10 shows an example of two voxlized based phantom sets.

XCAT phantom Zubal head phantom

Figure 2.10 Voxlized phantom

2.5 Monte Carlo Method in Emission Tomography

Monte Carlo methods are statistical calculation techniques used to solve problems
associated with stochastic processes. The main principle of Monte Carlo methods is

to create a model that represents the physical system under investigation. Based on a
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random sampling of the prior known probability density functions PDFs of
occurrence for each process interaction, the model simulates the processes reaction.
This technique has been known since 1770 and it was first applied in field of medical
radiation in the 1960s when Anger used it to simulate the physical reaction of a
scintillation camera[44]. Since then, due to the stochastic nature of radiation
processes such as emission, transportation, and detection ,Monte Carlo method has
become a very popular simulation technique in the field of nuclear medicine.

Actually, the Monte Carlo simulation technique plays an essential role in nuclear
medicine researches and studies [6]. It is useful to understanding the concepts of
imaging systems like PET, quantifying the radiation amounts, planning the
radiotracer dosage, measuring the performance of new-modelled scanner, as well as
optimizing its design and protocol. Nowadays, the simulation data is important for
the assessment of image reconstruction algorithms development, evaluation, and
validation .The main advantage of this simulation method in nuclear medicine and
particularly in PET imaging is the possibility to change different parameters during
the simulation scenario, which allows to investigate and evaluate the effect of those
modifications on the system performance. Usually, this is impossible or too
expensive to test using a real experiment or analytical calculating approaches.

In the context of nuclear imaging field, the success of the Monte Carlo technique is
related to its ability to describe the physics of particles interaction with material
based on the random generator, and to its ability to model rules that describes the
interaction of particle movement through materials by using particle cross section
and sample probability distributions. In photon tracking simulation, the data of cross
section provide information used to calculate the length of photon path and the

interaction type. After that, using random number generators and prior known rules
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for sampling, the PDFs of the photon events are sampled. The energy of that photon
may be wasted during its path or it can pass throw all materials until it reaches the
detector. Later, the PDF sampling makes the decision whether the tracked photon
should be accepted or rejected[6], [44].

The main components of Monte Carlo simulation applied to PET imaging system

illustrated in Figure 2.11 are:

e Random Number Generator

Random numbers and Random Number Generators (RNG) are important for
modelling physical systems having a stochastic nature. The RNG should create a
sequence of numbers in long runs within a short time period. The resulting sequence
has to be uniform, uncorrelated and reproducible. A computerized RNG algorithm
delivers the sequence of numbers based on a fixed number known as seed. Linear
Congruential algorithm is one of the most common RNG algorithms which use
equation (2.9) to generates its seed

Sps1 = (a$,, + b)mod(2™) (2.9)
Where a and b are constant integers, m is a computer word size. The seed number is

randomly changed by using values from the computer’s system clock [45].

e Sampling Method

It is a practice to obtain statistical variables that are distributed according to a
particular probability distribution function PDF. The based method of sampling for
Monte Carlo simulation was developed in the Manhattan Project and published by
Von Neumann in 1950s. Nowadays, different sampling techniques are available:
distribution sampling, rejection sampling and mixed sampling techniques. With the

distribution sampling technique a cumulative distribution function CDF(X) is
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generated from the integral of probability distributions PD(x) over a specific interval

[a,X] as in equation (2.10).

CPD(x) = f PD(x)dx (2.10)

a

In order to sample the x variable, the CPD(x) is replaced with a random number from

the uniform distribution over range of {0,1}. [6], [41]
e Photon Transport

One of the most important physical interactions in nuclear medicine imaging
simulation is the photo-electric effect. The total cross section data for a given photon
in specific energy E can be calculated by interpolating the discretized libraries. The
photon incident is absorbing and emitting an electron which has the same direction
as its original incident photon. The electron energy is defined as the incident
photon’s energy minus the electron binding energy. For all emission events, the
photon emission is randomly and repeatedly sampled across the total and partial

cross sectional data.
e Variance Reduction

This makes a simulation statistically efficient. This is achieved by obtaining a high
precision of estimated number of iteration and by obtaining smaller time to compute

number of events at single detector. For more details see[6], [41], [46], [47]
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Figure 2.11 Monte Carlo simulation applied to PET imaging system from[9]

More details of the principles and main components of Monte Carlo simulation in

medical applications can be found in [6]-[9], [41], [45].

2.5.1 Monte Carlo Simulations Software

Several Monte Carlo codes for simulating a wide range of emission tomographic
studies were developed over last dedicates. Those codes can be classified into two
main categories: analytical code and practical tracking code .In addition ,the particle
tracing code category is divided into general purpose code and emission
tomographic dedicated code. The general purpose codes are usually used for high
energy particles while the dedicated is developed specially for SPECT or PET
simulations [3]-[5], [44]. The most popular general purpose codes are: the Electron
Gamma Shower (EGS) code [48], the Monte Carlo N-Particle (MCNP) transport
code [49], the GEometry ANd Tracking (Geant) toolkit[50], and the Code System to
Perform Monte Carlo Simulation of Electron Gamma-Ray Showers in Arbitrary
Materials (PENELOPE)[51]. The available emission tomographic dedicated codes
are: Simulation System for Emission Tomography SIimSET [52] and the Geant4
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Application for Emission Tomography GATE[53]. All of these codes suffer from
multiple drawbacks and limitations in terms of speed and difficulty of use ,but they
are advantageous in terms of validation and support.

Recently, the most powerful dedicated code enabling PET simulation is GATE. This
Monte Carlo based simulation. The leading drawback of this code is the extremely
high simulation time. For example, to simulate a scan of the whole body, more than
17000h CPU time is required. The photon detection efficiency is the second
limitation because detection efficiency becomes much small when the simulation has
a large number of particles. Furthermore, the complexity and hard programming skill
necessary to use it are other limitations. The user needs to carefully specify all details
of the simulated processes and it is difficult to adapt the specific needs according to
the simulation requirement. For that reasons, self-made Monte Carlo based
simulation may be refereed for overcoming the public code limitations and achieve
the desired goal. This is especially true in case of seeking simplicity of use with a
high execution time[4], [44], [54].

For comprehensive overview of the Monte Carlo simulations software package, go to

[41], [44], [55], [56].
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CHAPTER 111

METHODOLGY

3.1 Introduction

In this chapter, we describe the significant steps to simulate the PET physical
operations and discuss the proposed methodology for predicting the radiotracer-
injected dosage for adult patients by optimizing the dosage recommendation amount
used today in the clinical examination in order to detect abnormal lesions and
tumors. As shown in Figure 3.1, any computerized PET imaging system is composed
of phantom specifications (patient model) and scanner specifications, processed by

simulation software in order to reconstruct the PET desired images.

phantom l

specifications

\_/’"\

FBP image
reconstruction
module

simulation row noisy

sinogram

scanner

specifications

PET
images

Figure 3.1 PET simulation basic structure

Phantoms are seen as a collection of digital volume arrays (2D images) that are used

to approximate the locations and dimensions of the patient’s body structures and
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organs. These phantoms are mainly derived from segments of CT or MRI
tomographic images of the required part of the patient’s body. A scanner model
designed to illustrate a common cylindrical PET scanner currently used for clinical
patient examinations. It models important parameters of the scanner: detectors
material, detectors surface area (mm?),detectors diameter ring (mm), a number of
detector rings, and a number of detectors per ring. The process of PET imaging is
then simulated based on the Monte Carlo method. For simulation implementation, we
follow the basic algorithm provided in [57] . The algorithm covers PET processes
like radiotracer activity uptake, acquisition time, positron range, positron inhalation,
photon transportation, and photon detection. The information that come from the
simulation are organized in a matrix called sinogram. Sinogram is a simply ordered
way to store the events registered by each detector into sets of parallel projections.
Finally, we reconstruct the PET image of the injected radiotracer activity distribution
within required part of patient’s body.

In order to produce a PET hybrid image that shows the functional information about
the activity distribution as well as the anatomical information, we combined the
resulting PET image with CT or MRI tomographic images by investigating an image
fusion function.

The details of implementing all of above processes is presented and discussed in the

following sections.
3.2 Patient Model

Generating a realistic model of the patient’s anatomical and biological functions
from imaging data is the important aspect of simulation [7], [9], [40]. Theoretically,
the patient computerized model represents a tissue, organs and body region in order

to visualize the radiotracer distribution, scattering and absorbing as similar as in real
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patient. By using a computerized model of the patient, we were able to test different
or completely innovative cases by simply altering that model with different

situations.

3.2.1 The Phantom

As shown in Figure 3.2, two digital volumes were used for the Monte Carlo
simulation performed: a matrix generated from reading a real clinical data and a
matrix of the digital anthropomorphic phantom.

The PET examination scenario simulated in this work is very closed to a real
examination scenario. Clinical data provides the approximate accurate experimental
results, while digital phantom provides the simulation data for evaluation of

detecting abnormal lesions and tumors.

reading various images file

anthropomorphic

phantom clinical data

voxlized phantom

Figure 3.2 Digital voxlized phantom

3.2.2 Phantom Builds from Real Data

The generation of realistic patient’s phantom from real data generated two different
maps represented as array: 1) a map of radiotracer distribution in the patient tissue

and organs called emission map; 2)a map of the photon travelling and absorption
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through the patient body structures (this map is called an attenuation coefficient map
and plays a vital part in representing a more accurate phantom).

Regarding the radiotracer activity used in the simulations presented in our
experimental examination (**F-FDG), the values presented in emission maps were
developed using image-based segmentation in AMIDE software[58] and scanning

scenario was done using realistic software SImSET [52]
3.2.3 Radiotracer Injection Dose Calculation

According to EANM guideline recommendation for **F-FDG PET examination
;there is standard recommendation on radiotracer amount injected to the patient(1A)
[14]:

IA = 7.2 x patient weight(KG)/scan time (min) + 10 (3.2)
By flowing the principle of as low as reasonable achievable (ALARA) [18], each
patient should receive the minimum amount of IA that is necessary to produce a
good diagnostic image. To this purpose and along with the variation in patient body
parameters, we proposed a method to scale the IA dose according to patient’s age
based on EANM guideline recommendation and Young’s formula used in nuclear

medicine dosage calculation[59]-[61] :

, atient age (year
A =|-2 gelvean) |, ia (3.2)
patient age(year) + 12

The details of calculating IA method is described in the following flowchart in

Figure 3.3:
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Figure 3.3 Radiotracer injection dose calculation process
3.2.4 Phantom Simulation Process

Using MATLAB platform, the phantom data is read as a binary file and arranged into
a reshaped array having the following dimensions: data-dimension*data-
dimension*data-size. According to the digital phantom set used in the current study,
the array size is 256*256*128. The next step consists in forming the radioactivity
distribution map (emission map) as a matrix based on the table of activity
distribution ratio coming from simSET scanning for the **F-FDG.Then, the matrix of
attenuation coefficient map is formed by following the same strategies applied in the
emission map forming. The constant linear attenuation coefficient (u) of the
approximated organs and structures is calculating using SIimSET based on the

phantom geometry and the photon travelling distance. The different attenuation
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coefficient () of the structures is approximated with our constructed phantom

illustrated in Table 3.1.

Table 3.1 Example of attenuation coefficient of the structures in Zubal phantom

Tissue and structure
Pons

Gray matter

White matter
Cerebrospinal fluid
Water

Fat

Air

Linear Attenuation Coefficient (L)
0.528
0.212
0.213
0.207
0.206
0.185

0.0004

An example of the activity distribution table for*®F-FDG radiotracer activity in the

phantom under study is showed in figure 3.4. The first two columns in the activity

distribution tables define the index intervals of organ and tissue, e.g. {0,82} in the

first line of figure 3.4 while the third column attached a correlated activity ratio ,0 in

this example . In a case of the Zubal phantom, each organ and tissue are associated

with specific indexes that make clear implementation of emission map and

attenuation map .Table 3.2 contains 24 out of the 63 Zubal phantom index numbers

and their corresponding information about structures and organs of interest.
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83

85

88

89

91

95

96

98

Table 3.2 Index numbers and their associated structures in Phantom under

white matter
medulla oblongata
artificial lesion
frontal lobes

Pons

occipital lobes
Hippocampus

Fat

101

103

105

107

108

109

111

112

study

caudate nucleus
insula cortex
Putamen

internal capsule
septum pellucidum
Thalamus

corpus collosum

special frontal lobes

113

114

115

117

120

122

123

124

cerebral falx
temporal lobes
fourth ventricle
parietal lobes
globus pallidus
cerebral aqueduct
lateral ventricles

prefrontal lobes

L i I e

INDEX TRABNSLATION FILE FOR THE PHG SIMULATION ACTIVITY INDEXES TO
ACTIVITY TRBLE ENTRIES.

This is set up to be a rough similation of FDG distribution in an oncology sStudy.
and everywhere else to 1. OCutside the braimn is =zero.

The format of the file

Zubal tissue index interwval reguired activity concentration

3

3

3

3

£ Brain concentration is set to 4,
3

3

3

3

L L i i i e 2 2 R 2 2 2 2
a gz 0

83 83
g4 B4
85 85
g& 87
g8 88
g% 89
90 30
91 351
49z 54
85 37
93 100
101 103
104 104
105 108
105 103
110 1140
111 111
112 114
115 115
11&€ 114
117 117
118 113
120 120
121 121
12z 123
124 124

L = B = o = T = T e T . T e T S 1 Y Y IS

Figure 3.4 SImSET activity distribution table for **F-FDG radiotracer activity
in Zubal phantom
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3.2.4.1 Adding Tumors and Lesions

At this step, we will define one or multiple tumors on a particular phantom. A tumor
area is a rectangular of Gaussian nature, the radioactivity distribution using equation
(3.3). In this equation IA represents the total injected activity computed the
previously in section 3.2.3., AM of specific point is the radioactivity distribution ratio
getting from emission map constructed in previous step, x, Yy represent the

boundaries of the tumor area, and ¢ is the variance of that values.

tumourActivity = (IA - AMx,y) * exp(— [(Xz—axo) + <y2_0y0>l) (3.3)
x y

In order to match the radioactive distribution ratio of the surrounding healthy tissue,
the radioactive distribution ratio is set as the higher value at the center of the tumor
area and is gradually reduced towards the edge of the tumor. We can specify more

than one tumor of different sizes at different positions in single phantom.
3.3 Scanner Model

When defining the model of a tomographic scanner, specific guidelines with respect
to the hierarchy of the scanner component must be followed in order to track the
particle’s physical interactions. Most PET scanners are built from single or multiple
rings, each ring having several blocks divided into crystal detectors.

In order to provide a basic building block for the scanning experiment, here, we are
using a novel tomographic scanner model. In addition to specifying the number of
scanner rings, we are required to specify the radius of each ring and the surface area
for a single crystal detector. The number of crystal detectors in blocks for single ring

computing as following:
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No.Detectors 2w * RingRadius (3.4)
0 LeteCtors = etectorSurfaceArea '

According to[34], the ring radius is usually setting between 300 and 600mm and the

surface area of each crystal detector is usually setting between 2 and 5mm.

3.4 PET Process Simulation
After setting up the scanner model, we define the PET physical processes that occur
during the simulation. The four processes we implementing are summarize in the

next illustrating chart (Figure 3.5).
Positron Emission
and Annihilation
Photon
Transportation
Photon
Detection
Sinogram
formation

Figure 3.5 PET physical processes implementing in the simulation

3.4.1 Positron Emission and Annihilation

Through the process of radiotracer decay and before the process of annihilation, a
positron is emitting and comes out from the radiotracer nucleus with a certain
energy. This positron travels some distance inside the patient’s tissue until it loses its
energy (principally due to the Coulomb interactions with the surrounding electrons)
[24]. Then, the annihilation process between this positron and one electron happens.
The distance from the emission point to the annihilation point is called positron

range. For ®F-FDG radiotracer, the positron range has a maximum value of 2.3mm
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and an average value of 0.16 in water phantom[62], [63]. As in [62] the range is
distributed as screwed function and when the event number is large, it can be treated
as Gaussian function. The positron range distribution of **F-FDG in water phantom

simulated by[64], [65] is present in Figure 3.6

"°F POSITRONS |

4 mm| I % T
! TR |

|

|

| 100 TRACKS [

| |
¥ L - —

4 mm

Figure 3.6 positron range for *F-FDG in water, adapted from [65]
In this work, we will randomize the positron range (PR) by applying a method of
generating exponential variate based on basic method for pseudo-random number
sampling, known as inverse transformation sampling. For implementation, we define
an array of pseudo-random number generated from uniform distribution UD in the
{0,1} interval. The exponential variate of the PR is computed as in equation (3.5). In
order to insure that the positron distribution range PR is not exceeding the maximum
value of 2.3 and is not lower than 0.0,we use the inverse cumulative distribution
function F[66] .
PR = F~(UD) (3.5)

As mentioned in[66], [67], the inverse cumulative distribution function F* is
calculated using the equation (3.6).

—log(1—UD)

7 (3.6)

F~Y(UD) =

For 2> 0, A is a distribution parameter that defines the random events occurrence and

it is known as intensity parameter. Because UD is a uniform distribution in the {0,1}
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interval, (1-UD) is distributed as UD[68]. This means that the exponential variate of
PR in equation (3.5) is generated as follows:

PR = w (3.7)

Moreover, when PR reaches a maximum value of 2.3, the random events distribution
IS becoming 0, the distribution parameter is set to A = 10 and the equation (3.7) is
updated. The final positron range PR calculation equation implemented in our
simulation in order to randomize PR is based on equation (3.8):

PR = —0.23 x log(UD) (3.8)
By using equation (3.8), we ensure that the simulation is randomly selecting range
for each positron emission PR within our limited interval. The generated value of PR

is used in the next step to determine the coordinates of the annihilation point.
3.4.1.1 Positron Emission Direction

After choosing the emission range, we will randomly choose a direction for each
emitted positron. This positron can go in any direction within angle & between 0° to
360°.The direction angle @ is randomly generated using RNG by selecting a number
from the uniform distributed numbers in the interval {-1,1}.Then we set the selected

number to be the cosine value of the direction angle 6, cosé.
3.4.1.2 Positron Annihilation Point Coordination

We consider the coordinate of the point where the positron is emitted as ( PEy,PEy)
and the final point where positron is annihilated with the electron as (PAx ,PAy). The
x-coordinate PA, and y-coordinate PAy of positron annihilation point for direction
angle 6 between 0° to 180° withsin® >0 [57] and random generated number

between 0 and +1 are computed using the following equations:
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PA, = PE, + PR xcos@ (3.9

PA, = PE,+ PR* sin6 (3.10)
In order to expand the angle range from 0° -180° to 0°-360°, we computed the
coordinates of the annihilation point which lays between 180° -360° based on a
random generated number between -1to O and sinf < 0 :

PA, = PE, + PR xcos@ (3.11)

PA, = PE, — PR * sin6 (3.12)
At the end of the above steps, we ensure that all possible direction of emitted
positron are computed and that the annihilation point for the '®F-FDG positron

emission range {0-2.3} is identified.
3.4.2 Photon Transportation

As mentioned in chapter 2, the results of positron and electron annihilation process
are two photons. Those photons are transported through the patient’s tissue until they
hit the scanners detectors. In this step, we track the movement direction of the
generating photons assuming that photons are moving exactly 180° away from each
other at any direction.

The angle of the photon movement (transportation line) is randomly chosen using the
same steps followed in section 3.4.1.1 for the positron emission direction. In
addition, we are identifying the (X,Y) coordinates of one point laying on the photon
transportation line by following the same procedure described in section 3.4.1.2.

By determining the coordinates of the annihilation point (PAx ,PAy) and the
coordinates of the point on the photon line (X ,Y), the photon transportation line slop
m can be computed as :

Y= m (X—PA, +PA) (3.13)
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3.4.3 Photon Detection

The PET scanner used in this work (as described in section 3.3) is based on ring of
detectors. We set the coordinate of the ring center point as (R, R) where R is equals
to the radius of the same ring. Then, this ring of detectors can be described
mathematically by the equation:

(X—R)? 4+ (Y —R)? = R? (3.14)
From the equations (3.11) and (3.14), the coordinates of the ring detector crystals

(PDy,PDy) ( the point in the detector that the photon ray hit )can be calculated as:

—2(2PA, — mPA, — 2R) + \/4(PAy — mPA, — 2A)% — 2(PA, — mPA, — 2A) (1 + m?) (3.15)
PDy = 201+ m?)
PDy = m(PD, — PA,) + PA, (3.16)

We have two photons from each annihilation processes, two detection point are
generated and the result of above equation is always greater than zero. In next

section, the sinogram is built by randomly choosing one of those two points.

3.4.4 Sinogram Formation

The sinogram is only information obtained from the positron emission tracking. As
defined by [57] , the ultimate meaning of the sinogram is “how many photons hit the
certain detector in the certain angle”.

While the coordinates for annihilation point and detection point beside center point
of the detectors ring are already computed from the previous stages. In this step, we
compute the value of the angle a between the photon transportation line and the
detector line of response LOR (the connection line between photon detection point

on the scanner ring and the detector ring center point), as shown in the Figure 3.7.
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positron annihilation point
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photon detection point
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phton transportation
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Figure 3.7 Sinogram building process

In addition to the a angle, Figure3.7 illustrates the existence of angles 3 and y which

represent the angle formed by detector line of response LOR and the angle formed by

the photon transportation line respectively. The value of o can be easily calculated by

determining the tangent values of those two angles B and y which equals to the slope

value of its corresponding line.

PD, — PA,

@ny = pp, —pa,
_PD,—R
tanfB = PDx——R

From the Pythagorean theorem[69], the value of a is calculated as following:

(tana)? = (tany)? — (tanp)?

tany —tanf

)2

t 2=
(tan a) (1*tany*tan,8

tany —tanpf
1 *tany*tanﬁ)

a = tarctan(

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

Then the value of o is set to positive if the photon transportation line goes anti-

clockwise from the LOR, otherwise is set to be negative. We will repeat this process

for all detectors positioned at the scanner ring.
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3.4.4.1 Sinogram Building Process

Now, we are going to build a sinogram matrix and fill it using the certain angle f to
decide which detector element is hitting with a particular photon in each coincidence
event. In order to perform this aspect, the following steps are done. First, using
equation (3.4), we compute the total number of detector elements (crystals) in the

scanner ring that form the specific angle .

2w * R

= 3.22
DSA (3:22)

Where ND is the number of detecting elements, R is the ring radius and DSA is the
size of each detecting crystal and its setting at scanner modelling stage.

Next, we divide the entire scanning ring into ND parts. Each part forms its own 3
angle in combination with the detector line LOR. Then, the ring parts are arranged
into four equal quadrants. For each photon event, we first find the quadrant of
detector and then, the angle B is used to determine the detector crystal number (as
shown in Table 3.3). After that, we repeat all of those steps for all generated two
opposite photons (photon pairs) and we complete the sinogram matrix by adding one
to the point (detector number, o ).

Finally, using this procedure, we are satisfying the definition mentioned at the
beginning of this section. Consequently, we are determining how many photons-pair

hit the certain detector (using B angle) at a certain angle (as a angle).

Table 3.3 Detectors ring arrangement

Quadrant Detector number
First quadrant B*ND /360°
Second guadrant (180°-p)* ND / 360°
Third quadrant (180°+B)*ND/ 360°
Forth quadrant (360°-B)*ND/ 360°

*ND = total number of detecting elements
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3.5 PET Image Reconstruction

In sinogram matrix built in section 3.4, we have saved two key parameters: the
number of excited crystal detector (the detector that the photon hit) and the angle o
between photon transportation line and the detector line of response LOR. From
these parameters, we reconstruct the PET image using the filter back projection FBP
reconstructing algorithm .Due to its simplicity and fast computational process, FBP
is a recommended algorithm by National Electrical Manufacturers Association
NEMAJ5] To achieve the desired PET image, we implement the reconstruction
algorithm provided by [57] as follows. First, the angle 6 for each detector crystal is
calculated by comparing the list of detectors to the total number of detector ND
already defined in the pervious stage using equation (3.22).

detectorNo.
— o Sty 3.23
6 = 360° * D (3.23)

Then the coordinates of each detector (Dy,Dy) placed in the scanner ring can be
determined using the angle 6 and the equation(3.14).When 0<6<180° then the

detector coordinates are:

{szR—sinB if 6 <90° (3.24)
D, = R+ sin(6 —90°) if 90° <6 < 180° '
D, =R —R?— (D, — R)? (3.25)
If 180°<0<360° then the detector coordinates are:
{Dx = 2R — sin(6 — 180°) if 180° < 6 < 270° (3.26)
D,=R- sin(360° — ) if 270° <6 < 360° '
D, = R+R?— (D, — R)? (3.27)

Now, in order to recognize all spot positioned on the photon transaction line ,we
calculate the slope m, of each photon line using (Dy,Dy) coordinates and the angle o

taking from the sinogram as in following equations :
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{mp=tan9+a if a<0° (3.28)

m,=tanf —a if a=0°
After that, the number of events already stored on sinogram matrix field (detector

number, a) is added to the recognized spots, as shown in Figure 3.8.

Figure 3.8 Reconstruction of single detector crystal

Finally, by repeating the above procedure for every crystal in the detector block, the

PET image can drown.

3.5.1.1 Fusion of the PET Reconstructed Image

In this step, in order to provide a combination image of PET /CT or PET /MRI
which is used mainly for getting more accurate diagnoses information by enhancing
the details of information from the obtaining image, we align the resulting
constructed image with the CT/MRI image used for phantom building [70]. The
fusion procedure is performed as follows: After the PET image is reconstructed and
the filtering is applied to the resulting image. The next step is performing a spatial
transformation between the two images one of the PET and other of CT or MRI. The
key of the spatial transformation step is to align the two images by defining a spatial
relationship between the pixels of one image and relocating them into a new location
in the resulting image. The final step in image fusion is the overlapping of the two

images with a suitable level of transparency.
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3.6 Image Quality Assessment

There are many image quality assessments tools available in the field of PET
reconstructed image expressing and evaluation. For the purpose of our work, we are
choosing to evaluate the two most popular tools: Signal to Noise Ratio (SNR) and
Noise Equivalent Count (NEC).

Furthermore, because from the medical point of view, for a given diagnostic task
such as tumor/lesion detection, the significant measure for PET image quality is
observing and detecting small foci [10], [15], we provide a particularly attractive

performance measurement of the reconstructed image precision and recall.
3.6.1 Signal to Noise Ratio

SNR is a statistical measurement representing the relation between an acquired signal
and the background image noise. We are getting its value by calculating the ratio of
total detected photons mean DP,, to the signal standard deviation DP,.

The total detected photons DP is computed by counting all detected events at each
detector crystals for all detecting blocks of the scanner ring. Then, by taking the
square root of detected photons mean DP, we can calculate the standard deviation
DP,. The SNR is a decibel logarithmic parameter, and it is calculating by equation

(3.29).

DP
SNR = 20 log(D—PZ (3.29)

3.6.2 Noise Equivalent Count

NEC is a statistical measurement describing the number of detected photons needed

to produce an equivalent image with PET ideal system. It is obtained by calculating
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the ratio between the numbers of detected photon DP to the total number of photon

events[10], [12], [15].

TZ
= 3.30
NEC T+S+R ( )

where T is the true event (detected photon event), S is scattered event and R is a
random event (S and R are undetected photon events).
In cylindrical PET systems, NEC is directly proportional to the square of SNR [12],

[71] and it can to be evaluated as following:

2

DPu
NEC = (zo log(D—PU)) (3.31)

3.6.3 Performance Measurement

As stated before, the ultimate measure of PET image quality is the ability to detect
the presence of possible tumors and lesions. In a certain situation, the PET image is
regarded as the realization of a tumor sampling on a specific region. The diagnostic
task of classifying significant changes of pixel values of the reconstructed image
according to the given region can be treated as a problem of tumor detection and
location.

There are several measures of performance for the tumor detecting classifiers such as
precision and recall. In order to calculate precision and recall, the classifier confusion
matrix is computed. As shown in Figure 3.9, confusion matrix is a composite of four
elements: True Positive (TP), True Negative (TN), False Positive (FP), and False
Negative(FN) [72]-[74] . For each pixels associated with tumor values in the
reconstructed image, we have a true result if the detected and true classes are the
same. TP indicates how many tumors-pixels are detected as tumor and accepted

while TN indicates how many not-tumors-pixels are detected as not-tumor and
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rejected. The error occurred when the detected class and true class are opposite. In
this situation, FN indicates how many tumor-pixels recognized as not-tumor and FP

indicates how many not-tumor-pixels are detected as tumor-pixel

True

Tumaor not-Tumar

True Positive False Positive

Tumaor TP Fp

deected

False Negative True Megative

not-Tumor EN ™

Figure 3.9 Confusion matrix

Precision measures the percentage of the pixels detected as tumors that are truly
tumors. Recall measures the percentage of tumor-pixels that are truly detected from
all pixels in the reconstructed image. The following equations represent the precision

and recall, computed based on the confusion matrix:

TP
precision = m (332)
TP
recall = TP+—F1V (333)
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4 RESULTS
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CHAPTER IV

RESULTS

4.1 Introduction

In this chapter, different simulations on a set of patient chosen from clinical data are
performed. We have 60 patients MRI images and metadata from available open
source Digital Imaging and Communication in Medicine DICOM library. The main
purpose of these simulations is to evaluate the simulated PET system discussed in
previous chapters and then predict the optimal radiotracer injection dosage used in

detecting abnormal lesions and tumors. .
4.2 Technical Requirements

The simulations in this study are performed using MATLAB R2013a (win32) on a
Windows7 operating system and Intel®(R) Core(TM) i3 CPU M330 @ 2.13GHz 4
GB RAM with Intel® HD Graphics card. Some parts of the simulations are done on
an Oracle VM VirtualBox version 4.3.25, Linux operating system, Ubuntu 14.04.3
platform to run Virtual Gate vGate3.0 software[53]. Other imaging processing and
analysis software also used on Windows machine, they are Scion Image Scnimage
software[75], a Medical Imaging Data Examiner AMIDE[58], and OsiriX DICOM

Viewer[76].
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4.3 Experiments and Results

To perform our simulations, the patient model is built from digital phantom and his
clinical MRI image. By following the algorithm illustrated in Figure 3.3,each patient
model is injected with 11 independent different *®F-FDG dosages calculated from
equation(3.2). The scanner model is also built according to the technical
specifications of real clinical scanner used for PET imaging system. After that, the
PET imaging simulation is done for all patient models. Furthermore, according to the
experiment scope, the patient models are divided into three different groups based on
their age and weight. Finally, the resulting images and statistical values for those
groups are used in system evaluation comparisons, image quality assessments and
performance measurements. .

In this simulation, we choose brain as our main region of interest because it
important region for PET imaging in clinical examination. In addition, the brain has
frequent lesions and tumor occurrence beside other abnormality disease including

Parkinson’s disease and Alzheimer’s disease.
4.3.1 Patient Model

As illustrated by Figure 3.2 presented in section 3.2.1, two digital volumes were used
for developing our patient model: a real image from DICOM library and a digital

anthropomorphic phantom based on Zubal phantom.

e Real MRI Image

We used BRANIX data set which is a set of DICOM files consisting of 1) MRI
images data set associated with brain tumors. 2) Data header, called metadata that
includes image information such as image type, modality, matrix dimensions, patient

name, patient age and patient weight.
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MATLAB is very useful tool in processing the DICOM image data as well as read its
metadata. Figure 4.1 illustrate the result of reading a series of transverse MRI brain
images from DICOM file. The metadata associated with this image is presented in

Figure 4.2.

Figure 4.1 MRI brain image from DICOM library
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Figure 4.2 Metadata associated with MRI image presented in Figure 4.1




e Zubal Phantom

It is a set of a computerized head phantom. It is formed by a high resolution, well-
segmented MRI image sequence of 35years old healthy male weighted 63 KG and
measuring 155 cm in height. It is have been stored in three different datasets. In this
simulation, we selected the second dataset which consists of 128 images each of
them have a dimension of 256*256 pixel and 1.5 cm® voxel size. Each voxel is
associated with a label corresponding to specific internal brain structure.

This simulation focuses on the anterior portion of the brain matter (cerebrum) which
contains mostly gray and white matter. The phantom simulation process described in
section 3.2.4 is applied on the selected anthropomorphic phantom. The algorithm
eliminates all non-cerebrum organs and tissues such as the skull, hair, eyes,nose, or
any other structures placed inside the human head. Then, the radiotracer distribution
based on the patient data and radiotracer ratio (Figure 3.4) is set in order to form an
emission map. By using the same procedure and Table 3.1, the attenuation map of
this model is formed. An example of applying the above examination on image
number 45 from Zubal phantom is shown in the following Figures.

Figure 4.3 illustrates the original selected MRI image from Zubal phantom before
excluding the non-cerebral structures. Figure 4.4 presents the MRI image after
exclusion. Figure 4.5 shows the resulting attenuation coefficient map. Figure 4.6 and
Figure 4.7. present the resulting emission map of injected radiotracer activity amount
equal to 370 MBq and 600 MBq, which are typical and maximum recommended
radiotracer injection. All further PET imaging simulation processes and experiments

will be performed on this constructed patient model.
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Figure 4.3 Original MRI phantom image for the proposed patient model

60
40
- |
_ 20
1]

A: colouring modified phantom B: greyscale modified phantom

Figure 4.4 MRI phantom for the proposed Patient model after excluding non-
cerebral structures
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A: colouring attenuation map B: greyscale attenuation map

Figure 4.5 Attenuation coefficient map for the proposed patient model
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Figure 4.6 Emission map of the proposed patient model when the total injected
radiotracer amount = 370MBq
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Figure 4.7 Emission map of the proposed patient model when the total injected
radiotracer amount = 600MBq

4.3.2 Scanner Model

In the current simulations, a commercial clinical PET system, Siemens Biograph2
clinical PET scanner is modelled. This system model in GATE was extensively
validated using clinical data as specify by NEMA and it’s widely available in clinical
daily routine. The Biograph2 PET scanner is a cylindrical type of scanner. The
simulation parameters of the scanner are set as follows: detectors ring with radius
412.5 mm. Each detector is made of blocks crystal array. The dimension of each
crystal element are 6.45*%6.45*25 mm, axial field of view 180 mm, and scanning time

is 60s. Table 4.1 summarizes the system geometry and scanning conditions

59



considered in the simulation processes. The real and simulated scanner is presented

in Figure 4.8.
=@ |
o™
A: Biograph2 PET scanner B: simulated Biograph2 PET

Figure 4.8 Physical and simulated illustration of the proposed scanner model

Table 4. 1 Specifications and features of the Siemens Biograph2 scanning
system[12]

TECHNICHAL SPECIFICATION
axial field of view, mm | 180

Crystal Size, mm 6.5 X 6.5x25
Patient Weight Limit Kg | 204

Power Supply Voltage PET: 230 VAC, 50/60 Hz,

PROCESSOR SYSTEM

Acquisition CPU Syngo-based Windows platform
storage capacity >100 GB HD

Image processor Intel Pentium 4

storage capacity >128 GB, 100,000 images (online)

The accuracy of the proposed scanner model was validated by comparing the
obtained simulation results with the measured results obtained from physical real
scanner according to performance measurement parameters recommended by NEMA

performance protocols such as spatial resolution, sensitivity and scatter fraction. In
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validation experiments ,The simulated results produce for each scanning session

directly compared with the real experimental data obtained from[77], [78].

e Spatial Resolution

Spatial resolution is the ability of the simulated system to differentiate between two
adjacent points in an image. It is measured in the simulated system by placing a
patient phantom at a different position in the scanner from the scanner center in axial,
trans-axial and radial direction (figure 4.9) by following the NEMA performance
procedure. Table 4.2 contains the experiment results for the axial and radial direction

for each phantom placed at 10 an 100 mm from the scanner center.

Figure 4.9 Direction at which spatial resolution measured. axial direction (blue),
radial direction (green) and trans-axial direction (red)

Table 4.2 Spatial resolution for two different phantom positioned at 10 and 100
mm from the center of the proposed scanner model

EXPERIMENTAL EXPERIMENTAL
MEASUREMENTS SIMULATIONS RESULTS
Phantom position 10 100 10 100
Radial direction 6.12 7.02 5.43 6.54
Axial direction 6.25 6.65 5.56 5.93
Trans-axial direction 5.89 6.31 5.24 5.71
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e Sensitivity

The sensitivity of the simulated scanner is defined as the scanner ability to detect the
annihilation photons. In NEMA protocol, the sensitivity of the scanner is measured
by counting the number of detected photon coincidence event per second (cps) for a
given radiotracer amount expressed in MBq. Table 4.3 presents a comparison of the
measured and simulated sensitivity of our scanner model when the phantom is placed

at the 0 and 100 mm from the scanner center.

Table 4.3 Simulated and measured values of the sensitivity of our proposed
scanner model

EXPERIMENTAL EXPERIMENTAL
MEASUREMENTS SIMULATIONS RESULTS
Phantom position 0 mm ‘ 100 mm 0 mm ‘ 100 mm
Sensitivity 6722 cpc/MBq ‘ 7237cpc/MBq | 6785 cpc/MBq ‘ 7282 cpc/MBq
Ratio
(0 mm/100 mm) 0.929 0.932

e Scatter Fraction

In NEMA performance protocol, the scatter fraction in specific photon energy is the
ratio of scattered coincidence events to the total number of coincidence events. For
sufficiently low photon energy such as in our experiment, random coincidence is
very small and can be discarded. Therefore, the measured total events are the sum of
true and scatter events only. In Table 4.4 we illustrate the results of computing the
scatter fraction of our scanner model in two intervals of photon energy

{300,650}KeV and {425,650} KeV.
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Table 4.4 Simulated and measured value of the scatter fraction experiment of
our proposed scanner model

EXPERIMENTAL EXPERIMENTAL
MEASUREMENTS SIMULATIONS RESULTS

PhomE e'f/”ergy’ ‘ 300-650 ‘ 425-650 ‘ 300-650 ‘ 425-650

Scatter Fraction ‘ 45.3% ‘ 34.1% ‘ 44.1% ‘ 33.4%

4.3.3 Simulated PET Image Quality Assessment

With the goal of assessing the relationship between the quality of simulated PET
image, the amount of radiotracer injected to the patient and the patient’s physical
parameters (age, weight), we investigate a set of simulation studies based on the
image quality measurement introduced in section 3.6.3. For those studies, we have
performed PET imaging simulations with the PET scanner model and the patient
model proposed earlier. We simulated a set of 60 patients provided in the DICOM
data set with the range of weight from 40 to 150 Kg, and adult ages distribution from
20 to 95. From the given weight range and for constant age, we can divide the
patients dataset into three groups: slim patients (group of patients with very low
weight,45>weight) , medium-weight patients (group of patients with moderate
weight, 45<weight<70), obese patients (group of patient with a heavy
weight,70<weight<90) and overweight patients (group of patient with weight >90).

The range of the injected radiotracer in the simulation was chosen to cover the
radiotracer amount given to the patients in PET centres based on our proposed initial

injection radioactive A calculation equation introduced in section 3.2.3.

patient age (year)
A= - * 7.2 * patient weight/min + 5 (4.2)
patient age(year) + 12

Also, in this study for each patient, we performed 11 independent PET imaging

simulation with activity systematically covering the entire interval of recommended
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amount radioactivity. Then, the NEC, SNR and lesion detectability (precision and
recall) was computed for every simulation. The experimental results are classified as

flowing:

e Computing the NEC, SNR for our default patient parameters weight=63 kg and
age 35 years. This patient parameter is directly typical to the anthropomorphic

phantom parameters. These results are illustrated on Table 4.5.

Table 4.5 Statistical parameters SNR and NEC for default scanner and patient

model
Lol ti;‘glf/‘l’tBeg) SNR(dB) NEC(cps)
304 59.0221 3.48366+03
321 59.1509 3.4999¢+03
338 59.4232 3.53116+03
355 59.6715 3.5607e+03
372 59.7905 3.5749¢+03

e Calculating the optimal radiotracer injection amount for our default patient
parameters in term of lesion and tumor detection. Table 4.6 provides the precision

and recall values computing in this simulation.
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Table 4.6 Lesion detection (precision and recall) for default patient model

Total injected Precision Recall

Activity(MBQ)
253 0.1364 0.1714
270 0.1705 0.2143
287 0.1818 0.2286
304 0.2727 0.3429
321 0.4545 0.5714
338 0.5455 0.6857
355 0.7955 1
372 0.8750 1
389 1 1
406 1 .
423 1 1

e Calculating the optimal radiotracer injection amount for patients with different
weight in Kg, and constant age in year in term of lesion and tumor detection. Table
4.7 compares the recommendation, theoretical and experimental amount of injection
radiotracer for randomly selected patients. The recommendation amount is the dose
recommended by EANM dosage card[13], [14] .The theoretical dosage is the dose
directly resulted from equation (4.1) and the experimental dose is the minimum

injection dose with recall=1.
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Table 4.7 Total injected activity for patients with different weight in Kg and
fixed age in year, age=35 years

Weight Recommended Theoretical Experimental

(kg) activity (MBQ) activity (MBQ) activity (MBQ)
40 300 215 313
55 346 295 339
63 370 338 355
70 454 375 375
90 504 383 383
113 600 605 435
120 600 643 510

e Calculating the optimal radiotracer injection amount for patients with fixed
weight in Kg and different ages in term of lesion and tumor detection. As in above
table, Table 4.8 shows examples of recommendation, theoretical, and experimental

amount of injection radiotracer for randomly selected patients.

Table 4.8 Total injected activity for patients with fixed weight in Kg and
diffrent age in year, weight=63 Kg

Age Recommended Theoretical Experimental

(year) activity (MBQ) activity (MBQ) activity (MBq)
20 370 284 355
35 370 338 355
48 370 363 358
55 370 372 360
63 370 381 362
70 370 382 362
90 370 400 362

66



Figure 4.10 and 4.11 show the details of how lesion detection process was computed
when recall=1.Finally,in Figure 4.11 we show an example of image-based lesion
detection experiments for patient with 63Kg and 70 years old and Table 4.9
illustrates the total injected radiotracer doses and their corresponding precision and

recall values of the same simulation.

A true and detected tumor B: detected tumor

Figure 4.10 True and detected tumours when recall=1

X124 143
Index: 0
RGB: 0, 0, 0.516

X124 143
Index: 0
RGB: 0, 0, 0.516

A: 2x zoom-In B: 4x zoom-In

Figure 4.11 True and detected tumor when recall=1 (detailed view)
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Simulation 1 Simulation 2

Simulation 9

Simulation 10 Simulation 11

Figure 4.12 Image-based lesion detection experiments of 11 independent
simulations for patient with 63Kg and 70 years
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Table 4.9 Precision and recall values image-based lesion detection experiments
of 11 independent simulations for patient with 63Kg and 70 years

Simulation Zg':i?/li t';g:/? gc?) Precision Recall
1 247 0.1364 0.1714
2 267 0.1705 0.2143
3 286 0.1918 0.2286
4 305 0.3287 0.3429
5) 324 0.4545 0. 6429
6 343 0.5455 0.9000
7 362 0.6443 1
8 382 0.8750 1
9 389 0. 9625 1
10 406 1 1
11 423 1 1
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CHAPTER V

DISCUSSIONS

5.1 Introduction

This chapter reviews and discusses the main results obtained from the simulations
performed in this thesis. For clarity, the discussion chapter is organized into sections

corresponding to each of simulations illustrated in the previous chapter.

5.2 Patient Model

As shown in chapter 4, the PET imaging processes are simulated for 60 patients real
MRI images. For each patient, we present our development of computational patient
model used in the simulation. The model generated from the segmentation of
patients” MRI image taken from BRAINX dataset and the digital anthropomorphic
phantom Zubal phantoms were used in nuclear imaging researches. The phantom
model produced a digital comparable data of the patients’ image that corresponds to
that obtained from the real clinical data with the PET imaging system. The patient
model developed from segmented MRI image is of patient having 63Kg, 35 years
and with a brain tumor is presented in section 4.3.1, Figures 4.3 - 4.7.

As in literature[3], [10], [12], [15], we conclude that the investigation of the
computational patient model from real data is a fixable and efficient procedure to

describe the physiology and anatomical structure of the patient body region under
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study. In addition, the investigated patient model has a huge potential for predicting
the optimal radiotracer injection dosage used in detecting abnormal lesions and

tumors in a safe and reliable manner.

5.3 Scanner Model

In chapter 4, we presented the specifications followed to enable simulation of PET
imaging systems in MATLAB platform and to deal with the data output from the
simulated process. In order to reach equilibrium between simulated and real system
output, the implemented class is validated according to the technical standards
provided by the Association of Electrical Equipment and Medical Imaging
Manufacturers NEMA. In this manner, we can use our simulation software results in
the clinical practice to reconstruct the required examination data. Furthermore, due to
its wide area of use in clinical application, SIEMENS Biograph 2 PET system was
used in this work. Also, as stated in chapter 4, the evaluation parameter tested with
our proposed model are: spatial resolution, sensitivity and scatter fraction. These
parameters are directly compared with their respective values from real experimental
data.

Figures 5.1 and 5.2 show the spatial resolution values obtained from the simulated
scanner that are within 9% of the values obtained from the real scanner. We can
conclude that the results of our simulation provide a performance improvement in
term of the special resolution in comparison to the respective real measurements.
These improvements are achieved by introducing an analytical distribution function
for the positron emission and annihilation with a specific range 2.3mm. For the same
factor, the analysis of the comparison between the simulated and real values of
sensitivity evaluation metric shows that the simulated values provide improvement

sensitivity (up to 2%) compared with the experimental sensitivity values. The
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analysis comparisons are illustrated in Figure 5.3.Now, the evaluation comparison
between simulated and real scatter fraction metric showed in Figure 5.4 indicates that
in all cases the real scanner provides 2% to 3% had better scatter fraction values. The
main aspect that causes this underestimation of the simulated model is the
approximation of the scanner geometry used for our simulation model.

From the above evaluation results, we can conclude that the scanner model described
in this study is validated,and the inconsistencies between the simulated and real data
are tolerable. Consequently, this validated model can be used for PET optimization

studies and their results can be directly implemented in clinical examination.
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Figure 5.1 Spatial resolution for phantom positioned at 10 mm from the center
of scanner ring
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Figure 5.2 Spatial resolution for phantom positioned at 100 mm from the center
of scanner ring
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Figure 5.3 Sensitivity values for phantoms positioned at 0 and 100 mm from the
center of scanner ring
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Figure 5.4 Scatter fraction evaluation measurement for two energy windows

5.4 Simulated PET Image Quality Assessment

The main goal of this thesis is to predict the minimal amount of injected radiotracer
to the patient in order to achieve precise tumor detectability, sufficient image quality,
and to reduce patient’s radiation risk. To reach that goal, we performed a set of
simulation studies based on the patient’s physical parameters (age, weight)and fixed
scanning time as described in sections 3.6.3 and 4.3.3.The simulation results are

discussed according to the following categories:
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e Patient weighted 63 Kg and was 35 years old

Figure 5.5 shows the NEC values associated with a moderate radiotracer amount
injected to our default patient model. According to Figure 5.5 we can conclude that
as the injected amount of radiotracer increases, the quality of the constructed
sinogram ,the reconstructed PET image and the NEC values are increased. After the
peak of NEC values is reached, as the injected amount of radiotracer increases, the
NEC values are remaining the same and the quality of the constructed sinogram and

the reconstructed PET image will stagnate as well.

3.60 -
3.58
3.56
3.54
3.52
3.50
3.48
3.46 -
3.44 -
3.42

NEC *103

304 321 338 355 372 389 406 423
totalinjected activity (MBq)

Figure 5.5 NEC values for default scanner and patient model

For the same patient, Figure 5.6 illustrates the evaluation results of calculating the
optimal radiotracer injection amount in term of lesion and tumor detection based on
precision and recall values. The optimal radiotracer amount according to our
simulation is 355MBq that is 5% optimized compared to the clinical injection dosage
which equals to 370MBg.Also, it discrepancy from the calculated initial dosage

value 338 MBq by 5%.
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Figure 5.6 Lesion detection (precision and recall) for default patient model

e Patients with different weight and constant age

Figure 5.7 illustrates the evaluation results of calculating the optimal radiotracer
injection amount in terms of lesion and tumor detection based on precision and recall
values for a set of randomly selected patients from the available dataset of 60

patients.
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Figure 5.7 Total injected activity for patients with different weight (Kg) and
fixed age (=35 years)
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Comparisons of the simulator, recommended and theoretical calculating injected
dosage according to the patients groups divided in section 4.3.3and illustrated in

Figure 5.8 are:

e For the group of slim patients, the minimal injected radiotracer amount that
provides accurate lesion detection by the simulator is 4% greater than the clinical
recommendation dosage and up to 45% greater than the initial theoretical calculating
dosage.

e For the group of medium weight patients, the simulator dosage is optimizing the
clinical recommendation dosage approximately by 5% to 7% and they are greater
than the initial computed dosage by approximately 5%.

e For the group of obese patients, the simulator and the initial theoretical dosage are
equal and they are optimizing the clinical recommendation dosage by 17% to 24%.

e For the group of overweight patients, the simulator dosage is optimizing the

clinical recommendation dose and the initial theoretical dose by values up to 28%.
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Figure 5. 8 Total injected activity for different patients groups
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e patients with fix weight ( Kg )and different ages ( years)

Figure 5.9 illustrates the evaluation results of calculating the optimal radiotracer
injection amount in terms of lesion and tumor detection based on precision and recall
values for a set of randomly selected patients. The comparative evaluation between
simulator, clinical recommendation and the theoretically calculated dosage shows a
discrepancy values for the theoretical dosage among patients. Also, the simulator
dosage provides 4% to 5% optimization to the clinicaly recommended dosage of

injected radioactive substance.
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Figure 5.9 Total injected activity for patients with fixed weight ( Kg) and
different age ( years) weight=63 Kg

From the above results, we can conclude that our simulator can perform a desirable
and efficient prediction of injection radiotracer amount that optimizes the current
clinical amount up to 28%. In addition, we can conclude that the total injected
radiotracer dosage for adult patients are mostly affected when considering patient

weight rather than patient age.
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5.5 Execution Time

All the simulations in this study are monitored (in seconds) to assess the time
consumed to execute certain simulation processes. Figure 5.10 illustrates the
execution log file for lesion detecting simulation for patient with 63Kg and age 70

years old. This log file shows that the total execution time is 1712 s which is equal to

20 min as estimated by [57]
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Figure 5.10 PET simulation execution time profile
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CHAPTER VI

CONCLUSION & FUTURE WORK

6.1 Conclusion

In this thesis, a PET imaging simulation tool for physical and clinical research was
proposed. This simulator can be easy to learn and use by beginners, temporary users
(patients), researchers and it does not require a programming and a PET scanning
background. Compared to other simulation platforms, our proposing tool can be
operated on common PCs and has a good trade-off between performance and the
computational resources used. This tool efficiently reconstructs a PET image both
from digital anthropomorphic phantom and real patient image. The simulation
includes pre-processing of the patient image, calculating the radiotracer injection
dosage, positron range distribution, PET image reconstruction and PET image
quality measurements.

The main purpose of this study is to predict the optimal radiotracer injected dosage
for adult patients. To achieve our goal, we performed a set of simulations to
assessing the relationship between the quality of simulated PET image, the amount of
radiotracer injected to the patient and the patient’s physical parameters (age, weight).

Each simulation is done using the PET scanner model and the patient model to
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diagnostic task (tumor/lesion detection), it calculates the PET image quality
assessment variables NEC and SNR. From the results of those simulations, we
conclude that our simulator can drive a desirable and efficient prediction of injection
radiotracer amount that optimizes the current clinical amount up to 28%. In addition,
we can conclude that the total injected radiotracer dosage for adult patients are
mostly affected by the patient weight rather than by the patient age.

The proposed PET system was evaluated according to National Electrical
Manufacturers Association (NEMA) requirements in order to apply our simulation
results into the clinical applications. We notice that our proposed system provides a
9% improvement to the real PET system. Furthermore, our proposed system passes
the NEMA validation test and it is qualified to use directly in PET optimization

studies.

6.2 Limitation

We observe that our simulator does not provide accurate results with the very small
input values of the scanner parameters: crystal size and scanner ring radius. In
addition, in this simulation, we assumed no attenuation correction and assumed fixed
value of positron range and annihilation.

In addition, the dosage optimization study is focused only on an adult patient because
EANM provides a specific dosage card for children that minimize the effective
radiation dose among patients beside the selected digital anthropomorphic phantom

support.

6.3 Future Work

In order to build more realistic model of PET scanner systems and to be able to test

more sophisticated situation, this work can be improvement in several ways:
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Adding additional system data, for example, dead time of the detector,
radioactive decay, full width at half-maximum, time-of-flight information.
Improving the system sensitivity and accuracy by exploring more efficient
methods such as parallax error reducing algorithm.

Introducing more efficient random number generators in order to enhance the
resulting statistical value.

Increasing the accuracy of the predicted injection dosage by introducing one
of the time dependent processes involved in PET scanning such as
radiotracer alternation over time passage, the scanner motion during the
acquisition process and the patient breathing while scanning.

Expand the dosage optimization study to include children and old patient in

additions to adult patients.
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